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An Extension of the Argument Principle and Nyquist
Criterion to Systems with Unbounded Generators

Makan Fardad and Bassam Bamieh

Abstract

The Nyquist Stability Criterion is generalized to systems where the (open-loop) system has infinite-dimensional
input/output spaces and a (possibly) unbounded infinitesimal generator. This is done through use of theperturbation
determinantand an extension of the Argument Principle to infinitesimal generators with trace-class resolvent.

I. I NTRODUCTION

The Nyquist criterion is of particular interest in system analysis as it offers a simple visual test to determine
the stability of a closed-loop system for a family of feedback gains [1] [2]. Extensions of the Nyquist stability
criterion exist for certain classes of distributed [3] and time periodic [4] systems. [3] considers distributed systems
in which the open-loopG(s) belongs to the algebra of matrix-valued meromorphic functions offinite Euclidean
dimension, and the Nyquist analysis is carried out by performing a coprime factorization onG(s).

To motivate the discussion in this paper, let us first consider a finite-dimensional (multi-input multi-output) LTI
systemG(s) placed in feedback with a constant gainγI. In analyzing the closed-loop stability of such a system,
we are concerned with the eigenvalues inC+ of the closed-loopA-matrix Acl. If s is an eigenvalue ofAcl, then
it satisfiesdet[sI −Acl] = 0. Now to check whether the equationdet[sI −Acl] = 0 has solutions insideC+, one
can apply the argument principle todet[I + γG(s)] ass traverses some pathD enclosingC+. More concretely,
let us assume that we are given a state-space realization of the open-loop system. Then using

det[I + γG(s)] =
det[sI −Acl]
det[sI −A]

, (1)

if one knows the number of unstable open-loop poles one can determine the number of unstable closed-loop poles
by looking at the plot ofdet[I + γG(s)]

∣∣
s∈D

.
But in the case of distributed systems the open- and closed-loopinfinitesimal generators, A andAcl, may be

operators on an infinite-dimensional Hilbert spaceX and can beunbounded. Hence it is not clear how to define the
characteristic functionsdet[sI −A] anddet[sI −Acl]. In this paper we find an analog of equation (1) applicable
to unboundedA andAcl and use operator theoretic arguments to relate the plot ofdet[I + γG(s)]

∣∣
s∈D

to the
unstable modes of the open-loop and closed-loop systems.

Now if the multiplicity of each of the eigenvalues ofA is finite it can be shown thatdet[I + γG(s)] is still
a meromorphic function ofs on C, and one may be tempted to use the methods of [3] to analyze closed-loop
stability. But if the open-loop system has distributed input and output spaces, then [3] requires the coprime
factorization of aninfinite-dimensionaloperator. In addition, one often deals with systems of Partial Differential
Equations (PDEs) in which the state-space representation is the natural representation and it is more convenient
to deal directly with the operatorsA andAcl rather thanG(s) [see example in Section V].

Our presentation is organized as follows: We lay out the problem setup in Section II and describe the general
conditions for stability of distributed systems in Section III. Section IV contains the main contributions of the
paper in which the Argument Principle and the Nyquist Stability Criterion are extended to a class of distributed
systems. The theory is applied to a simple example in Section V. Proofs and technical details have been placed
in the Appendix.
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Notation

Σ(T ) is the spectrum ofT , andρ(T ) its resolvent set.σn(T ) is thenth singular-value ofT . B(X) denotes the
bounded operators on the Hilbert spaceX, B∞(X) the compact operators onX, andB1(X) the nuclear (trace-
class) operators onX, i.e. operatorsT that have the property

∑∞
n=1 σn(T ) <∞; B1(X) ⊂ B∞(X) ⊂ B(X). tr[T ]

denotes the trace ofT anddet[T ] its determinant.C+ andC− denote theclosedright-half and theopenleft-half
of the complex plane, respectively, andj :=

√
−1. C(z0;P) is the number of counter-clockwise encirclements

of the pointz0 ∈ C by the closed pathP.

II. PROBLEM SETUP

Consider the open-loop systemSo

[∂t ψ](t) = [Aψ](t) + [B u](t),
y(t) = [C ψ](t), (2)

where t ∈ [0,∞) with the following assumptions. The (possibly unbounded) operatorA is defined on a dense
domainD of the Hilbert spaceX and is closed.B andC are bounded operators onX. At any given pointt in
time,u, y andψ belong to the spaceX and are the distributed input, output, and state of the system, respectively.
We will refer toA as theinfinitesimal generatorof the system. We may also refer toA, B, andC as thesystem
operators. The open-loop systemSo

θ has temporal impulse responseG(t) := C eAt B, and transfer function

G(s) := C (sI − A)−1 B. (3)

Next we place the systemSo in feedback with a bounded operatorγF , ‖F‖ = 1, γ ∈ C. This forms the
closed-loop system shown in Figure 1 (left) with infinitesimal generatorAcl := A − B γF C. We separate the
functionF from the gainγ as in Figure 1 (right) to form the closed-loop systemScl, and it is our aim here to
determine the stability ofScl as the feedback gainγ varies inC.

Fig. 1. Left: The spatially periodic closed-loop system as the feedback interconnection of a spatially invariant systemG and a spatially
periodic multiplication operatorF . Right: The closed-loop systemScl in the standard form for Nyquist stability analysis.

We also make the following assumptions:

Assumption (∗): There exists at least one points ∈ ρ(A) such that(sI − A)−1 ∈ B1(X),
Assumption (∗∗): ρ(A) contains a right sector of the complex plane| arg(z − α) | ≤ π

2 + ϕ, ϕ > 0, α ∈ R.

III. STABILITY OF DISTRIBUTED L INEAR SYSTEMS

A semigroupeAt on a Hilbert space is called exponentially stable if there exist constantsM ≥ 1 andβ > 0
such that‖eAt‖ ≤ Me−βt for t ≥ 0. It is well-known [5] [6] that if A is an ifinite-dimensional operator, then
in generalΣ(A) ⊂ C− is not sufficient to guarantee the exponential decay of‖eAt‖. In this paper we focus on
systems whichdo satisfy the so-calledspectrum-determined growth condition, i.e., systems for whichΣ(A) ⊂ C−
doesimply exponential decay of the semigroup. Examples of such semigroups are numerous and include analytic
semigroups [7] [8].

Thus to guarantee the exponential stability ofScl, it is necessary and sufficient to show thatAcl = A−B γF C
has spectrum only insideC−. In the next section we aim to develop a graphical method of checking whether
or not Σ(Acl) ⊂ C−. Also, henceforth in this paper wherever we use the term stability we mean exponential
stability.
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Fig. 2. The closed contourD traversed in the clockwise direction taken as the Nyquist path asr → ∞. The indentations are arbitrarily
made to avoid the eigenvalues ofA (i.e., open-loop modes) on the imaginary axis.

IV. T HE NYQUIST STABILITY CRITERION FORDISTIBUTED SYSTEMS

A. The Determinant Method

As discussed in the Introduction, we aim to use operator theoretic arguments to relate the plot ofdet[I +
γFG(s)]

∣∣
s∈D

to the unstable modes of the open-loop and closed-loop systems. But first it has to be clarified what
is meant bydet[I + γFG(s)] for the infinite-dimensional operatorI + γFG(s).

From Assumption (∗) we know thatG(s) ∈ B1(X) for some s ∈ ρ(A). Then it is simple to show that
G(s) ∈ B1(X) for everys ∈ ρ(A) [9]. Also F ∈ B(X) impliesFG(s) ∈ B1(X). One can now define [10] [9]

det[I + γFG(s)] :=
∏
n∈Z

(
1 + γλn(s)

)
,

where
{
λn(s)

}
n∈Z are the eigenvalues ofG(s).

On the other hand, the boundedness of the operatorsB, C, F together with Assumption (∗) imply that (a)A
andAcl = A − γBFC are defined on the same dense domainD , (b) ρ(A) ∩ ρ(Acl) is not empty, (c) for all
s ∈ ρ(A) we haveγBFC(sI − A)−1 ∈ B1(X). This allows us to introduce theperturbation determinant[11]

∆Acl/A(s) := det[(sI − Acl)(sI − A)−1]

= det[I + γBFC(sI − A)−1] = det[I + γFG(s)]

which is analytic inρ(A)∩ρ(Acl) [see Lemma A1]. In fact∆Acl/A(s) is the equivalent of the fraction in (1) for
systems with unbounded infinitesimal generators. We are now ready to state an extended form of the argument
principle for such systems. The following theorem makes use of the formula [11]

d

ds
ln∆Acl/A(s) = tr[(sI − Acl)−1 − (sI − A)−1] for all s ∈ ρ(A) ∩ ρ(Acl) (4)

to relatedet[I + γFG(s)]
∣∣
s∈D

to the eigenvalues ofA andAcl insideD.
Theorem 1:If det[I + γFG(s)] 6= 0 for all s ∈ D,

C
(
0; det[I + γFG(s)]

∣∣
s∈D

)
= tr

[
1

2πj

∫
D

(sI − Acl)−1ds

]
− tr

[
1

2πj

∫
D

(sI − A)−1ds

]
= − (number of eigenvalues ofAcl in C+)

+ (number of eigenvalues ofA in C+),

whereD is the Nyquist path shown in Figure 2 that does not pass through any eigenvalues ofA.
Proof: See Appendix.

Remark 1:Theorem 1 relies on the fact that under Assumption (∗) both (sI − A)−1 and (sI − Acl)−1 are
compact operators, which means the infinitesimal generatorsA andAcl have discrete spectrum (i.e., their spectrum
consists entirely of isolated eigenvalues with finite multiplicity). ThenP = − 1

2πj

∫
D

(sI −A)−1ds is the group-
projection [12] [9] corresponding to the eigenvalues ofA inside D, and tr[P] gives the total number of such
eigenvalues [13]. Similarlytr[− 1

2πj

∫
D

(sI − Acl)−1ds] gives the total number of eigenvalues ofAcl in D.
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As a direct consequence of Theorem 1 we have the following.
Theorem 2:Assumep+ denotes the number of eigenvalues ofA insideC+. For D taken as above, the closed-

loop system is stable iff

(a) det[I + γFG(s)] 6= 0, ∀ s ∈ D,
and
(b) C

(
0; det[I + γFG(s)]

∣∣
s∈D

)
= p+.

B. The Eigenloci Method

The setback with the method described in the previous paragraph is that to showΣp(Acl) ⊂ C−, Acl =
A − BγFC, for different values ofγ, one has to plotdet[I + γFG(s)]

∣∣
s∈D

for eachγ. Note that this includes
having to calculate the determinant of an infinite dimensional matrix. This motivates the following eigenloci
approach to Nyquist stability analysis, which is very similar to that performed in [4] for the case of time-periodic
systems.

Let
{
λn(s)

}
n∈Z constitute the eigenvalues ofFG(s). Then

∠ det[I + γFG(s)] = ∠
∏
n∈Z

(
1 + γλn(s)

)
. (5)

Recall thatFG(s) ∈ B1(X) for everys ∈ ρ(A). This, in particular, means thatFG(s) is a compact operator and
thus its eigenvaluesλn(s) accumulate at the origin as|n| → ∞ [14]. As a matter of fact one can make a much
stronger statement.

Lemma 3:The eigenvaluesλn(s), s ∈ D, converge to the origin uniformly onD.
Proof: See Appendix.

Take the positive integerNε to be such that|λn(s)| < ε, s ∈ D, for all |n| > Nε. Let us rewrite (5) as

∠ det[I + γFG(s)] = ∠
∏

|n|≤Nε

(
1 + γλn(s)

)
+ ∠

∏
|n|>Nε

(
1 + γλn(s)

)
=

∑
|n|≤Nε

∠
(
1 + γλn(s)

)
+

∑
|n|>Nε

∠
(
1 + γλn(s)

)
. (6)

It is clear that if|γ| < 1
ε then for|n| > Nε we have|γλn(s)| < 1, and1+γλn(s) can never circle the origin ass

travels aroundD. Thus for|γ| < 1
ε the final sum in (6) will not contribute to the encirclements of the origin, and

hence we lose nothing by considering only the firstNε eigenvalues. There still remain some minor technicalities.
First, letDε denote the disk|s| < ε in the complex plane. Then said truncation may result in some eigenloci

(parts of which reside insideDε) not forming closed loops. But notice that these can be arbitrarily closed inside
Dε, as this does not affect the encirclements [4].

The second issue is that for some values ofs ∈ D, FG(s) may have multiple eigenvalues, and hence there
is ambiguity in how the eigenloci of the Nyquist diagram should be indexed. But this poses no problem as far
as counting the encirclements is concerned, and it is always possible to find such an indexing; for a detailed
treatment see [3].

Let us denote by
{
λn

}
n∈Z the indexed eigenloci that make up the generalized Nyquist diagram. [To avoid

confusion we stress the notation:λn(s) is thenth eigenvalueof FG(s) for a given points ∈ D, whereasλn is
thenth eigenlocustraced out byλn(s) ass travels once aroundD.] From (6) and the above discussion it follows
that

C
(
0; det[I + γFG(s)]

∣∣
s∈D

)
=

∑
|n|≤Nε

C
(
− 1
γ

;λn

)
which together with Theorem 2 gives the following.

Theorem 4:Assumep+ denotes the number of eigenvalues ofA insideC+. ForD andNε as defined previously,
the closed-loop system is stable for|γ| < 1

ε iff
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(a) − 1
γ
/∈

{
λn

}
|n|≤Nε

,

and
(b)

∑
|n|≤Nε

C
(
− 1
γ

;λn(s)
)

= p+.

V. A N ILLUSTRATIVE EXAMPLE

Consider the system defined on the intervalx ∈ [0, 2π] and governed by the Partial Differential Equation (PDE)

∂t ψ(t, x) = ∂2
x ψ(t, x) − γ cos(x)ψ(t, x) + ψ(t, x),

with γ ∈ C and periodic boundary conditions

ψ(t, 0) = ψ(t, 2π), ∂xψ(t, 0) = ∂xψ(t, 2π).

Let us rewrite this system in the form of a PDE described by

∂t ψ(t, x) = ∂2
x ψ(t, x) + ψ(t, x) + u(t, x),

y(t, x) = ψ(t, x), (7)

placed in feedback with the function
γF (x) = γ cos(x).

The problem is now in the general from discussed in Section II and can be considered as a differential equation
on X = L2[0, 2π]; A = ∂2

x + 1 and is defined on the dense domain

D = {φ ∈ L2[0, 2π] | φ, dφ
dx

absolutely continuous,
d2φ

dx2
∈ L2[0, 2π], φ(0) = φ(2π),

dφ

dx
(0) =

dφ

dx
(2π)},

B andC are the identity operator, andF = cos(x).
We take an extra step and use a similarity transformation to put the problem in anequivalentform that is

more familiar to us from multivariable linear systems theory. LetF be the transformation that takes the function
φ(x) ∈ L2[0, 2π], φ(x) =

∑
n∈Z φn e

jnx, to its Fourier series coefficientscol[· · · , φ−1, φ0, φ1, · · · ] ∈ `2. Then it
is simple to show thatA, B, C, andF have the following (bi-infinite) matrix representations

A =


. . .
−n2+1

. . .

, B = C =

 . . .
1

. . .

, F =


. . .

. . .

. . . 0 1

1 0
. . .

. . .
. . .

.
SinceΣ(A) = {−n2+1, n ∈ Z}, then Assumption (∗∗) is satisfied. For anys /∈ Σ(A) we have(s − A)−1 =
diag{· · · , 1

s+n2−1 , · · · }. Thus
∑

n∈N σn

(
(sI − A)−1

)
=

∑
n∈Z |

1
s+n2−1 | < ∞. Hence(sI − A)−1 ∈ B1(`2),

and Assumption (∗) is satisfied.
Notice that the open-loop system is unstable. Next we demonstrate that by plotting the eigenloci one can read

off from this plot the stability of the closed-loop system for any value ofγ ∈ C.
λ = 0, 0, 1 are the eigenvalues ofA insideD, hencep+ = 3, and we need three counter-clockwise encirclements

of −1/γ to achieve closed-loop stability. As can be seen in Figure 3(b) and its blown-up version (c), one possible
choice would be to take−1/γ to be purely imaginary and−0.2j ≤ −1/γ ≤ 0.2j. Clearly such−1/γ is encircled
three times by the eigenloci.

VI. CONCLUSIONS

We develop an extension of the Argument Principle and the Nyquist Stability Criterion that is applicable to
systems with infinitesimal generators that are unbounded operators with discrete spectrum and whose resolvent
operator is trace-class. This theory can be used to verify the stability of spatially extended systems and those
governed by partial differential equations, as demonstrated in an example.
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Fig. 3. The Nyquist pathD; The Nyquist plot; Blown-up version of the center part of the Nyquist plot.

VII. A PPENDIX

To prove Theorem 1 we need the following lemma.
Lemma A1:For s ∈ ρ(A), det[I + γFG(s)] is analytic in bothγ ands.

Proof: For s ∈ ρ(A), γFG(s) ∈ B1(X). Also γFG(s) = γFC(sI − A)−1B is clearly analytic in bothγ
and s for s ∈ ρ(A). Then it follows from [9, p163] thatdet[I + γFG(s)] too is analytic in bothγ and s for
s ∈ ρ(A).

Proof of Theorem 1: Consider any points in D. SinceD does not pass through any eigenvalues ofA, s ∈ ρ(A)
and thusγFC(sI − A)−1B ∈ B1(X) by Assumption (∗). Then from [10],

(
I + γFC(sI − A)−1B

)−1
exists

and belongs toB(X) iff det[I + γFC(sI − A)−1B] 6= 0, which is satisfied by assumption. Applying an
operator version of the matrix inversion lemma to

(
I + γFC(sI −A)−1B

)−1
, we conclude that(sI −Acl)−1 =

(sI − A+ BγFC)−1 ∈ B(X) and thuss ∈ ρ(Acl). ThereforeD is contained insideρ(A) ∩ ρ(Acl).
Let the pathC be that traversed bydet[I+γFG(s)] ass travels once aroundD. By Lemma A1,det[I+γFG(s)]

is analytic ins, and if det[I + γFG(s)] 6= 0 on D we have

C
(
0; det[I + γFG(s)]

∣∣
s∈D

)
=

1
2πj

∫
C

dz

z

=
1

2πj

∫
D

d
ds det[I + γFG(s)]
det[I + γFG(s)]

ds

=
1

2πj

∫
D

d

ds
ln∆Acl/A(s) ds

=
1

2πj

∫
D

tr[(sI − Acl)−1 − (sI − A)−1] ds, (A1)

where we have used (4) in the last equality. Notice that because

(sI − Acl)−1 − (sI − A)−1 = − γ(sI − A)−1BFC(sI − Acl)−1 ∈ B1(X) (A2)

for all s ∈ ρ(A)∩ρ(Acl), the right-hand side of (A1) makes sense and is finite. (A2) also gives that(sI−Acl)−1 ∈
B1(X).

On the other hand, since(sI −A)−1 and(sI −Acl)−1 both belong toB1(X) ⊂ B∞(X), their spectra consist
entirely of isolated eigenvalues with no finite accumulation point [13, p187]. By Assumption (∗∗) the real part
of the essential spectrum ofA is −∞. Now from (A2) we have that(sI −Acl)−1 − (sI −A)−1 ∈ B∞(X) and
thusAcl has the same essential spectrum asA [13, p244]. Therefore the pathD encloses a finite number of the
eigenvalues ofA andAcl. Thus in

1
2πj

∫
D

(sI − Acl)−1ds − 1
2πj

∫
D

(sI − A)−1ds
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each term is a finite-dimensional projection [9, p11, p15]. Taking the trace, from [13] it follows that

tr
[

1
2πj

∫
D

(sI − Acl)−1ds

]
− tr

[
1

2πj

∫
D

(sI − A)−1ds

]
(A3)

is equal to the number of eigenvalues ofA in D minus the number of eigenvalues ofAcl in D, whereD is the
(clockwise) Nyquist path and is taken arbitrarily large to encloseC+. Finally (A3) and (A1) together give the
required result.

Proof of Lemma 3: For s ∈ D ⊂ ρ(A), det[I+γFG(s)] is analytic in bothγ ands by Lemma A1. The proof
now proceeds exactly as in [4, p140] and is omitted.
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